Dynamic Texture Recognition
نویسندگان
چکیده
Dynamic textures are sequences of images that exhibit some form of temporal stationarity, such as waves, steam, and foliage. We pose the problem of recognizing and classifying dynamic textures in the space of dynamical systems where each dynamic texture is uniquely represented. Since the space is non-linear, a distance between models must be defined. We examine three different distances in the space of autoregressive models and assess their power.
منابع مشابه
Spatiotemporal Gabor filters: a new method for dynamic texture recognition
This paper presents a new method for dynamic texture recognition based on spatiotemporal Gabor filters. Dynamic textures have emerged as a new field of investigation that extends the concept of self-similarity of texture image to the spatiotemporal domain. To model a dynamic texture, we convolve the sequence of images to a bank of spatiotemporal Gabor filters. For each response, a feature vecto...
متن کاملDynamic Texture Recognition Using Normal Flow and Texture Regularity
The processing, description and recognition of dynamic (time-varying) textures are new exciting areas of texture analysis. Many real-world textures are dynamic textures whose retrieval from a video database should be based on both dynamic and static features. In this article, a method for extracting features revealing fundamental properties of dynamic textures is presented. These features are b...
متن کاملManifold Regularized Slow Feature Analysis for Dynamic Texture Recognition
Dynamic textures exist in various forms, e.g., fire, smoke, and traffic jams, but recognizing dynamic texture is challenging due to the complex temporal variations. In this paper, we present a novel approach stemmed from slow feature analysis (SFA) for dynamic texture recognition. SFA extracts slowly varying features from fast varying signals. Fortunately, SFA is capable to leach invariant repr...
متن کاملDynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields
This work presents a first evaluation of using spatiotemporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach gen...
متن کاملDynamic Texture Recognition Using Time-Causal Spatio-Temporal Scale-Space Filters
This work presents an evaluation of using time-causal scalespace filters as primitives for video analysis. For this purpose, we present a new family of video descriptors based on regional statistics of spatiotemporal scale-space filter responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms ...
متن کاملTwo-Stream Convolutional Networks for Dynamic Texture Synthesis
We introduce a two-stream model for dynamic texture synthesis. Our model is based on pre-trained convolutional networks (ConvNets) that target two independent tasks: (i) object recognition, and (ii) optical flow prediction. Given an input dynamic texture, statistics of filter responses from the object recognition ConvNet encapsulates the per frame appearance of the input texture, while statisti...
متن کامل